Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions
نویسندگان
چکیده
We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov–Vicsekmodels that canbe considered as non-local, non-linear, Fokker– Planck type equations describing the dynamics of individuals with orientational interactions. This model is derived from the discrete Couzin–Vicsek algorithm as mean-field limit (Bolley et al., Appl Math Lett, 25:339–343, 2012; Degond et al., Math Models Methods Appl Sci 18:1193–1215, 2008), which governs the interactions of stochastic agents moving with a velocity of constant magnitude, that is, the corresponding velocity space for these types of Kolmogorov–Vicsek models is the unit sphere. Our analysis for L p estimates and compactness properties take advantage of the orientational interaction property, meaning that the velocity space is a compact manifold.
منابع مشابه
Global Weak Solutions for Kolmogorov-vicsek Type Equations with Orientational Interaction
We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov-Vicsek models that can be considered a non-local non-linear Fokker-Planck type equation describing the dynamics of individuals with orientational interaction. This model is derived from the discrete Couzin-Vicsek algorithm as mean-field limit [2, 9], which governs the interactions of stochastic agents moving wi...
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملWeak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case
A stochastic version of the porous medium equation with coloured noise is studied. The corresponding Kolmogorov equation is solved in the space L(H, ν) where ν is an infinitesimally excessive measure. Then a weak solution is constructed. 2000 Mathematics Subject Classification AMS: 76S05, 35J25, 37L40.
متن کاملOnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions
This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...
متن کامل