Global Weak Solutions for Kolmogorov–Vicsek Type Equations with Orientational Interactions

نویسندگان

  • Irene M. Gamba
  • Moon-Jin Kang
چکیده

We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov–Vicsekmodels that canbe considered as non-local, non-linear, Fokker– Planck type equations describing the dynamics of individuals with orientational interactions. This model is derived from the discrete Couzin–Vicsek algorithm as mean-field limit (Bolley et al., Appl Math Lett, 25:339–343, 2012; Degond et al., Math Models Methods Appl Sci 18:1193–1215, 2008), which governs the interactions of stochastic agents moving with a velocity of constant magnitude, that is, the corresponding velocity space for these types of Kolmogorov–Vicsek models is the unit sphere. Our analysis for L p estimates and compactness properties take advantage of the orientational interaction property, meaning that the velocity space is a compact manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Weak Solutions for Kolmogorov-vicsek Type Equations with Orientational Interaction

We study the global existence and uniqueness of weak solutions to kinetic Kolmogorov-Vicsek models that can be considered a non-local non-linear Fokker-Planck type equation describing the dynamics of individuals with orientational interaction. This model is derived from the discrete Couzin-Vicsek algorithm as mean-field limit [2, 9], which governs the interactions of stochastic agents moving wi...

متن کامل

Existence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations

‎In this paper‎, ‎we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations‎. ‎By a priori estimates‎, ‎difference and variation techniques‎, ‎we establish the existence and uniqueness of weak solutions of this problem.

متن کامل

Weak solutions to the stochastic porous media equation via Kolmogorov equations: the degenerate case

A stochastic version of the porous medium equation with coloured noise is studied. The corresponding Kolmogorov equation is solved in the space L(H, ν) where ν is an infinitesimally excessive measure. Then a weak solution is constructed. 2000 Mathematics Subject Classification AMS: 76S05, 35J25, 37L40.

متن کامل

OnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions

This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016